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Abstract—The boundary element method is a more suitable technique than the finite element
method for problems having large stress gradients. One such problem is the stresses around mech-
anical fasteners. To solve a problem by the boundary element method requires a solution of an
integral equation. The integrand of the intcgral equation is a product of a known Green's function
and an unknown function. Unlike isotropic material, the plane orthotropic material can have three
forms of Green's function depending upon the relationship of the four material constants. To solve
the integral equations numerically, the unknown function is approximated by a piccewise continuous
lincar function. The boundary is approximated by a sum of straight linc segments. The result of the
two approximations is integrals over straight line scgments, the integrand of which is a product of
lincar polynomials and one of the three Green's functions. These intcgrals arc evaluated analytically.
By exploiting the common features in the three forms of Green's function a very cllicient algorithm
can be designed. Numerical results are presented for a circular hole in an infinite medium and in a
coupon, The results show good correlation with analytical results for all kinds of orthotropic
materials.

. INTRODUCTION

The boundary clement method or BEM starts with the statement of the problem in terms
of an integral equation. The integration in the integral equation is performed over the
boundary. Thus, for numerical purposes when the discretization needs to be performed, it
nced be done only on the boundary. This procedure is in contrast to the finite clement
method in which discretization is done over the entire body. The net result of this difference
is that the boundary element method generally requires less human and machine effort to
solve a problem to the same level of accuracy.

The integrand in the integral equations is a product of a known Green'’s function and
an unknown function. The Green's function by definition satisfies the differential equations
exactly. Consequently, the solution of the stresses and the displacements satisfy the differ-
ential equations exactly. Once more this is in contrast with the finite element method where
stresses are some weighted average over an clement. Thus the resolution of high stress
gradients like those near a pin hole in mechanical fastening problems, is much better by the
boundary element method than by the finite element method.

The form of Green's function for isotropic materials is independent of the material
propertics. That is, the Green's function for isotropic materials is a lincar combination of
some singular functions. The material constants of isotropic material affect only the con-
stants of the above mentioned linear combination. However, in orthotropic material, the
nature and the form of the singular functions also change with the material constants. The
dependence of the form of Green's function on the material constants has been known for
a long time[1-5]. For plane, linear, orthotropic, clastic material there arc three forms of
Green's function depending upon the relationship of the four material constants. Two
approaches have been used in the past to address the difficulty posed by the dependency of
the form of Green's function on material properties. Reference [4] describes an algorithm
using a single form of Green’s function. This restricts the analysis to materials of a particular
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kind. The algorithms of Refs [2. 3. 5] are more general. but are based on complex vanable
representation of the Green’s function. The advantage of complex variable representation
is that a single expression describes all three forms of Green’s function for a quantity. The
disadvantage is that the algorithm uses a complex variable arithmatic, which usually requires
more storage and computation time than a real variable arithmatic. In this work an
alternative approach is taken. The Green's function was rederived using a Fourier trans-
form[6). Each form is expressed in terms of real variables. Care was taken in identifying
the part of the Green's function the form of which would or would not change with the
relationship of the material constants. By exploiting the common features of the three forms
of Green's function an efficient algorithm has been designed.

The usual numerical approach in the evaluation of the integral is to approximate the
unknown function in the integrand by a linear combination of known polynomials. This
results in a linear expression in the unknown constants of the linear combination. The
unknown constants are evaluated by satistying the boundary condition at a finite number
of points. The coeflicients of the unknown constants are integrals containing the Green'’s
function and the polynomials. These integrals are usually evaluated numerically. The
advantage of numerical integration is that the order of the polynomial and the shape of the
boundary can be of any complexity. However, in practice, only a cubic polynomial and a
quadratic boundary shape have been used for an isotropic material. The disadvantage of
numerical integration is that another source of error has been introduced into the process
duc to the approximation of the integrand for numerical integration. The singular nalure
of the Green's function further exacerbates this disadvantage, particularly when stresses
need to be found near the boundary.

In this paper, the unknown function is assumed to vary piccewise lincarly, while the
boundary has been approximated by a sum of straight lines. The integrals are evaluated
analytically for cach form. In Ref. {§] the integrals were also evaluated analytically using a
lincar variation over straight line segments. The analytical expression, however, was
described using complex variables. Usually the singularity contribution is written explicitly
in the code and the remaining integral evaluated in the Cauchy sense. Thus the boundary
clement containing the singularity is usually treated differently from the rest of the boundary
clements. In this work all boundary clements are treated in the same manner. This results
in a simpler computer code. The correct value of the singularity contribution 1s obtained
from the analytical expressions as described in Appendix B. The algorithm was tested on
several geometries. Results for two cases are reported here. One corresponds to a circular
hole in an infinite medium while the other problem corresponds to a coupon with a pin
hole. Each geometry was considered for various relationships of material constants. An
excellent correlation was found with analytical results (when available).

In Scction 2, the formulation of the boundary value problem in terms of an integral
cquation is presented. Section 3 discusses the three forms of Green's function for planc
orthotropic material. Problem discretization is presented in Section 4, and the numerical
results in Section 5. In Appendix A, the mathematical expressions of the Green's function
arc reported. In Appendix B, the analytical expression for the integrals of the Green's
function are given.

2. PROBLEM FORMULATION
Let o, and ¢,; represent the Cartesian stresses and strains at a point. [t 1s assumed
throughout this paper that the Cartesian axes and the material axcs are parallel. The strains
and stresses in an orthotropic material are related as
€ = Cl 10« +Cl 20}'}*
('yv = CIZG\',\"*'CIDO-}V (l)

Cyoy = CJ)(T‘V

where the C's are material constants. Let f,(P) represent a point load in the direction &
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applied at a point P. Let H,;,(Q, P) represent the Green’s function relating the stresses at
a point @ to a unit value of f; at point P. By distributing the point load on the boundary
B. we obtain an integral expression given by

0,(Q) = iH,-,k(Q, P)f(P)ds ijk=x.y 2
sum over k

where s is the arc length measured from some arbitrary point to point P. To determine the
unknown fictitious traction f;, we need the boundary conditions. Only the traction boundary
condition given below will be considered in this paper

o, (Qn(Q) =pQ) iLj==xy 3)

sum over j

where n, are the direction cosines of the unit normal at point Q on the boundary and p.(Q)
are the applied tractions.

Formally stated the solution procedure is as follows : substitute eqn (2) in eqn (3) and
determine the function f;. Once f; is known, find stresses at any point Q using eqn (2).

3. THE GREEN'S FUNCTION

To find the Green's function, a two-dimensional infinite orthotropic planc is considered.
The equilibrium equation, the compatibility equation, and the boundary condition at
infinity arc solved using the technique of Fourer transforms. The boundary condition at
infinity is that the stresses and their first derivative go to zero.

Three forms of Green's function were found and are given in detail in Appendix A.
These three forms of Green's function correspond to the nature of the roots of the following
cquation ;

Cop* +2(Cia+ Cyy)p? +Cyy = 0. 4)
The difference in eqn (4) from previous work[1-4] is due to the use of the tensor

definition of strain in place of the engineering definition of strain.
The four roots of eqn (4) may be symbolically written as

py =14,(cos 8, +1sin §,) (5a)
Hy = —14,(cos 8, —1sin §,) (5b)
U3 = 1A,(cos 8, +1 sin ;) (5¢)
s = —1As(cos 6,1 sin &,) (5d)

-
where 1= /- 1.

3.1. Case I: ((C2+C33)/C11)? > (C2a/C 1)
For this case, , = 4, =0, and

_ Ci2+Cy,y \/((C12+C33)2_ Eﬁ))
"""\/( o ¢ /7cu)) (©)

The roots have no real part and are purely imaginary.
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3.20 Case H: ((Cy.+CdC) = (Cay'Cip)
For thiscase. 3, = 8. = 0. and

P N

- N \/ C1:+(‘}}) (7
Ay = A = S I
: i ( C'!l )

At first glance it would appear that this case is a degenerate case of Case 1. This indeed
is the case for terms T, and T: (eqns (A7a). (A7¢) and (A9a). (A9¢)) in the Green's function
{A1). However, for the terms T and T, (eqns (A7b). (A7d). and (A9b). (A9d)). therc s a
significant difference. Isotropic material belongs to this case and correspondsto 4, = 4. = |

Problems with material properties belonging to this case can aiso be solved by scaling
the original geometry. For example, by scaling the y-coordinate by the factor given ineyn
(7). the problem can be reduced to an isotropic case. A strategy used in Ref, {7] for solving
an orthotropic plate problem by the boundary element method.

33 Case U ((C 1+ C)'Cr) < (Con Cyy)
Forthiscase, 0, = d, =d.and 4, = 4, = 4 where

A eos o \/(l (\/(C::)+ ('MC“))
A, A ( - . - . -
2 Cyy Cyy
L i /((x,) cy‘+<'“>>
Asno = R -
S \/(2 (\/ (.H ('“

Thus the roots inegn (5) have a real and an imaginary part. From cqns (A7), (B12)
and (A12), (B14), one sees that Cases Tand HT have very similar terms.

4. PROBLEM DISCRETIZATION

To solve the boundary valve problem given by eqns (2) and (3) numerically, we
need to reduce the integral expression of eqn (2) to a lincar algebraic expression, This is
accomplished as follows,

44 Asswnprion |
Assume that the fictitious traction f; is lincarly piecewise continuous over A segments
of the boundary

¢ im 1 W(!LI”)
hiry =" g T Sa )
s LT D

S, <858,
m=12,....M

k=ux

where S, is the value of s at the mith node and " ace the unknown constants to be
determined.

4.2, Assumption 2

Assume that the mth boundary segment can be represented by N, straight line
scgments. This assumption does not introduce any more unknowns but permits a better
approximation of the shape of the boundary. As shown in Refl [8]. the result is more
accurate, Rewriting eqn (9) about the midpoint of cach subdivision and substituting in eqn
(2). we obtain
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N, d(nn»l) d(m m+t)__ (m)
c,(Q) = Z > [———-w( )+d""’}M.‘ Q. 5)+WM' (@.5.)
m=ln=1 m+l-S m4.1—'S
(10)
where §, = (S,+S,,1)/2 and
Sabl
M%(0.S) = J; (s—35,)H,,(Q.P) ds. (i)

Integrals A% can be found by substituting the appropriate formulas given in

Appendixes A and B. For a closed boundary, continuity requires
dM+V = dib, (12)

Thus there are M unknowns in each direction in eqn (10). To determine them we substitute
eqn (10) in eqn (3), and satisfy the boundary condition at M points in a collocation sense.
The result is a set of linear algebraic equations that can be solved for the unknown constants
. Once they are known, the stresses are evaluated from eqn (10).

The accuracy of the numerical solution to the algebraic equations is dependent upon
the conditioning of the matrix. In Ref. {9], an algorithm is described which improves the
conditioning of the matrix. It also makes the solution less seasitive to errors or changes in
the input data. The algorithm of Rel [9] is used in the present work.

5. RESULTS

The algorithm presented in this paper was tested on a number of geometries, loading
and material propertics. An excellent correlation with the analytical results was found in
all cases. Results are presented for a geometry (Fig. 1) which can simulate two kinds of
problems to be described later.

Each problem was solved for four kinds of material behavior which are shown in Table
1. All material constants were non-dimensionalized by the constant C,,. Case Ha represents
the special orthotropic material requiring only three independent material constants, Case
[1b represents the isotropic case.

5.1, Problem b a circular hole in an infinite plane under uniaxial tension
The geometry for this case was simulated by defining D = |, E = 50, H = 50, W = 100
in Fig. 1. A uniform tension of g, = | was applied in the y-direction. The analytical solution

T

3

| &+
-0~

s

1

P— W —f

Fig. 1. Geometry of the test problem.



6 M. VaBLE and D. L. SIKARSKIE

Tabie 1. Material properties

Material C, C,. C., Cy,
Case | I -0.25 1 1.63
Case la { -0.25 1.96 1.65
Case 1Ib { -0.25 [ 1.25
Case [ { —-0.25 1.96 1.25

to this problem is known[1] and is given below

_ O Cin+Ciy \/ Cn)) . .
K—Gn-J<2T+2 C:l +l at 9—0

where g, is the tangential stress on the hole boundary and K is the stress concentration
factor. The problem was solved with 168 unknowns (M = 84 ineqn (10)). and each problem
took less than 6 min of CPU time on the IBM 4031 computer. Results for the stress
concentration factor are shown in Table 2 for the various material constants. As can be
seen there is very good agreement between the analytical and computed solution by the
BEM.

5.2. Problem 2: coupon under uniaxial tension

For this problem the value of the variables shown in Fig. | were defined as D = |,
E=25 H=15,and W = 5.0. The problem was solved for the various material propertics
of Table [ for two different sets of load cases.

5.2.1. Problem 2a: traction free hole. A uniform tension in the y-direction was applicd
at y = Eand — H. All other boundarics including the boundary of the hole are load frec.

5.2.2. Problem 2b: pin simulation. A uniform tension was applicd at y = — /1. A normal
traction varying as sin { was applied at the hole boundary for between 0 and 180", The
magnitude of the normal traction was chosen to produce static equilibrium. The traction
on the hole is supposed to simulate a pin in mechanical fastening analysis[10].

The only solution that is known[4, 1 1] is for problem 2a for an isotropic material. Once
more an cxcellent correfation is scen. Figures 2 and 3 show variation ol normal stress o,
(or g,) vs x at O = 0, for material Cases 1 and 111, respectively. Results for material Cases
ITa and 11b fall between the two curves shown and are not reported to avoid clutter in the
diagram. By static equilibrium the area under these curves represent half the total force
applied in the p-direction. This global equilibrium was used as an additional check on the
solution. The computed and analytical (applied) value of the force in the p-direction is also
reported in Table 2. Once more, good correlation is seen for these values.

6. CONCLUSIONS

This paper has demonstrated an eflicient, accurate, and general algorithm for the
solution of stresses in a two-dimensional orthotropic matenal having strong stress gradients.
The paper underscores the importance of paying attention to the details of formulating the

Table 2. Numerical results

Case | Casc Ila Case Ilb Case i1
Problem Analytical Computed Analytical Computed Analytical Computed  Analytical  Computed

Stress concentration factors

1 3.191 3.053 2.690 2.604 3.000 2.894 2.565 2.604
2a — 3.299 — 2793 3135 3.125 — 2.675
2b — 6.454 — 5.073 — 6.005 — 4.734

Force in the y-direction

2a 5.000 4.993 5.000 5.009 5.000 5.004 5.000 5.009
b 5.000 4.937 5.000 4.988 5.000 4.982 5.000 4.981
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« = problem 2a
» =problem 2b

34

24

Normal stress in the y-direction

o Y Y T
o ns 1 18 2 25

x-coordinate

Fig. 2. Solution for Problem 2, Material Case 1.

§
§ + m=problem 2a
& + =problem 2b
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>
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x-coordinate

Fig. 3. Solutivn for Problem 2, Material Case 111

boundary value problem before embarking on the numerical aspects of the solution. Work
on incorporating displucement and mixed boundary conditions is ncarly complete and will
be published in the near future.
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APPENDIX A: MATHEMATICAL EXPRESSIONS OF GREEN'S FUNCTION
The Green's function H, , has the following form for all material constant relations.

H.. =E, T, +E,.T;
H., =E.T,+E,T,
H, =E.T,+E,.T; (AD
H,, =Eg T, +E,T,
H, =E\T,+EyT,
H., = EgTy+Ey T

The constant £, has the following form for all material constant relations:

E, = —{d +d,~dJ]{4nd})
Eyy= —Ad,—d,~d)y/{dnd,)
Fyo=dj(4n)

Eoo= = Qd,~dld )/ (And d,)
By o= (e ddd Y(@nd,)

Eyyo= (1 —d/d )} End,) {AD)
Eyo= —1jdn

Eyy=(d, = 2d ) /(4nd )

FEa=F,

[

EM = —d“[f;,
Ego=dEy,

where
dy = 2C +Cy)Cyy
d, = Cy/Cy,

dy = Jd,
d, = CII/CII'

(A}

Constants o, und o, as well as some of the 77s in egns (Al) change with the relutionship between the material
constants. Before defining them we define the following

r, = x{(Q) ~x{(F}
w (Ad)
r, = ¥(Q)—y(F)
where @ and P are ficld and source points as defined in eqn (2). Given below are the definitions of the remuining
quantities for cach kind of material.
Case 1: (4,2 > d,
dy = A 44y {ASa)
dy =44, (A3b)
where 4, ; are defined by eqn (6). Lot
r=rlvdin?

(A6)

ri=rit+iir}
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r‘ r'
T\==+- {AT7a)
ry rs
T,=2-x (ATb)
rPor
T, =20 22 (ATc)
T r:
i A,
T, =20 (A7d)
r r3
Cuse 112 (d,j2)° = .. For this case i, = 4, = 4 where 4 is defined by eqn (7)
dy = A, +4, =21 (ASa)
d, =1 (A8b)
=2 (A%)
ri
2‘ . 71
=200 (A%b)
iy
24,r,
Ty =~ {A%¢)
ri
. rin,=in
Te= e (A9d)
¥

Note that the terms T and 7' in eqgns (A9) would be obtained from cqns (A7) if we substitute 4, = 4, But
the same is not true tor the terms Ty and 7y

Case 1 (d,72)° < . For this case, 4, and 4, are complex quantitics

d; =24 cos d
. {A1D)
dy =2isind

where 4 and & are defined in egn (8). Define

F () = r = (4 sin d)r,
F () =Acosdr, (ALl
f:(t$) = ff(()') +I:;'((§)

- ir(‘s) ‘r.x( '_'S)
TR T A
(8) | F(=d
:’%5; + 53‘:“215—; (A12)
A8 A(=9)
TEG THCH
ARG A(=9)
TR TRCH

y

T,

Note the similarity of form for the terms in ¢yns (A12) with those in cqns (A7),

APPENDIX B

B.1. Analvtical expressions of integrals of terms in the Green's function
The functions M) in eqn (11) are integrals of the Green's function. Since the £, in the Green's function are
constants (see eqns (A1) we need to develop expressions for the integrals of T\, Ty T and T, only.
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Fig. BI. Geometry of a hue segment.

Lot the fengthv of the ath sepment be L (Gsee Figo BH) and the angle which this segment makes with the v-axs
be A Point L1 the nudpomt of the hine segment with coordinates (3, 7). For all values of 4, and 6, (k = 1.2}

defined inegns (61 (83, we detine the following quantities:
1) =con 0 ka0 sind (0824, sind, sin 0 cos @)
Cos 7o = (eos 0 F A s o, sin 0) ' H,

S Y A, cos o, sin (),

Cooolov O ke sin d(r ¥ cos o+ (v - F)A, cos O sin y, 1/,

Do e O e sin dr P sin gy F(y - F)A, cos 3, cos p H L

, L ¥ ,

(R, 5 G #D5

(R ( ‘+(;) + D}
L2-()

., = tan '( n, ‘)

-(L/2+C))
] 4. 1 e P
(), = tan ( D, )

‘\I‘A = IUS ((Rﬂ)nv A I{A)w)
Affe = (. ~ Uk,

ts ™~

J. s = (eos v Al +sinoy ABOH,
K. = —(siny Al —cos v A,
J, = ~Lcosy H +C "+ D K"
K, = —Lsiny H+CK"=DJ"

Ay = DAL 2=CH (R + Dl 2+ COARY);
B.= DRI =DI(R);

JU = (eos 2 TV —sin 20 K+ 204, sin 3y, — B, cos 3y,)
R = qsin 25, I b eos 2 KE™) = 204, cos 3y, + B, sin 3y,
hl

SO s cas Yo, HO=2D(sin 2y JIM Heos 25 KMV CIV DR

KN = —Losin 3y, Ho=2D(cos 2y

For convenience of writing we define

2 M —sin 2y, KUY - D I+ C KV

(Bl

(B2

By

(134}

(B5)

(B6)

(B7)

(B8)

(BN

(B
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S‘lc-
e =J‘ —5T, q=0.1. (BI1)

S,

The tunction I} is now defined for the various relations of material constants (see Sections 3.1-3.3).
Case |
](‘() . J(Iq!+‘!|£'i
!!IQQ = Ji‘a) ~jl:u!

,i)ql ey k"}“""K‘:ﬂ

lt‘w = ’A‘ql __K':d"

(B12)

Cuse 11
[(lq-) = zjqzq)
19 = (W -J) 24,
Il;n = 2K¢|w

Iy = (K9 = K¥)2,.

(B13)

Case H1

,c;:r == j<‘¢)+1t:¢)
[l:u) . Kll»n - K'.C“
,l‘n = l\'(lu)_q_Kthl

Il‘q) = -—-.I“'" +J'§",

(B14)

B.2. Ervaluation of singulurity

The Green's function H,,(Q. P) is singular when Q and £ coincide. This happens if stresses are to be evaluated
on the boundiry, for example when we try to satisty the boundary conditions of eqn (3). The usual approach in
BEM is to extract the singulanty analytically and evaluate the integral in the Cauchy principle sense. This paper
takes a different approach. Since we have amalytical expressions, we can use them to give the correct value of the
singularity, This is accomplished by choosing the point @ on the boundiry as a midpoint of a small segment of
length 2e. That is in Fig. Bl @ and A arc one and the same point. Thus L/2 = ¢ and from egns (B2) (B4) we
have €y =0, Dy =0, (R),,, = (R). =& and (f1),,, = —{fl,), = 7/2. The computer code also caleulates these
values and when they are substituted in the formula, we obtain the correct value of the singulurity contribution.



